doi: 10.56761/EFRE2024.S2-P-011501

Рентгеновской радиограф на основе танталового РZ-пинча

А.П. Артёмов^{*}, А.В. Федюнин, А.Г. Русских, В.И. Орешкин

Институт Сильноточной Электроники СО РАН, Томск, Россия *artyomov@ovpe.hcei.tsc.ru

Аннотация. В работе представлен опытный образец диагностического комплекса для радиографии на основе танталового РZ-пинча (Точечный Z-пинч). В эксперименте показано, что данная диагностика позволяет получать радиографические изображения с высоким пространственным (размеры источника составляют 2–10 мкм) и временным (длительность импульса рентгеновского излучения менее 2 нс) разрешением в спектральном диапазоне hv = 3-5 кэВ. Использование РZ-пинча для формирования источника излучения совместно с применением цифровой регистрации изображений позволяет получать серию снимков исследуемого объекта за короткий промежуток времени.

Ключевые слова: Z-пинч, сильноточный импульсный генератор, радиография, диагностика плазмы.

1. Введение

Импульсная радиография является мощным инструментом диагностики различных физических объектов. Она используется при исследовании структуры плазмы, сформированной катодным факелом [1], интенсивным релятивистским электронным пучком [2] или при электрическом взрыве проводников [3, 4] и т.д. Радиография представляет собой прямое проецирование рентгеновского изображения исследуемого объекта на экран. При использовании ступенчатых ослабителей, изготовленных из того же материала, что и объект исследования, данная диагностика позволяет получать информацию о распределении массовой плотности объекта [1, 2]. Определяющим фактором того, какой объект мы можем просветить, является источник рентгеновского излучения, а именно его характеристики: спектральный диапазон, его размеры и длительность импульса излучения. В настоящее время в качестве источника мягкого рентгеновского излучения используется сверхплотная высокотемпературная плазма, которую получают либо при облучении твердотельных мишеней мощным лазерным импульсом, либо при сжатии собственным магнитным полем плазменных лайнеров – Х- и Z-пинчей [1–6].

В данном радиографе для формирования источника зондирующего излучения используется РZ-пинч (Точечный Z-пинч). В отличие от проволочных X-пинчей, где материал лайнера создается при взрыве металлических проводников, в данном случае плазма пинча формируется при горении сильноточного дугового разряда в камере плазменной пушки. Затем испаренное вещество инжектируется через отверстие в аноде пушки в межэлектродный зазор основного генератора тока, где происходит сжатие вещества при протекании по нему мощного импульса тока и образование излучающей горячей точки. Первые работы в этом направлении были выполнены с легкоплавкими материалами. Они показали, что такой подход позволяет получать не менее яркий источник мягкого рентгеновского излучения. Однако у этого метода оказалось несколько хуже пространственное разрешение по сравнению с Х-пинчем и воспроизводимость параметров источника от пуска к пуску. Тем не менее, такое решение позволило получать серию радиографических снимков в течении короткого промежутка времени без необходимости вскрытия вакуумной камеры для установки новой проволочной нагрузки генератора [7]. Ресурс такого источника определялся эрозией катода, а также ресурсом изолятора, который был выполнен из полиэтилена и со временем деформировался. Таким образом, ресурс плазменной пушки не превышал 30 пусков.

Из экспериментов с Х-пинчами известно, что с точки зрения радиографии наилучшим образом подходят проволочки, изготовленные из материалов с высоким импедансом Z, таких как молибден или вольфрам [8]. Это тугоплавкие материалы, и чтобы обеспечить приемлемую эффективность испарения материала катода при горении дуги, необходимо серьезно уменьшить площадь его поверхности. Тем не менее ресурс таких катодов должен быть выше. Однако в этом случае использование пластиковых изоляторов не целесообразно из-за их быстрой деформации. По этой причине пластиковый изолятор пушки был заменен на керамический. Керамика не деформируется при горении сильноточной дуги и ресурс такой пушки определяется только ресурсом катода. Ранее конструкция плазменной пушки с керамическим изолятором была нами успешно апробирована в работе [2].

Целью настоящей работы являлось создание диагностического комплекса для радиографии, отличающегося высокой воспроизводимостью параметров источника излучения и удобством в практическом использовании.

2. Экспериментальная установка

Диагностический комплекс для импульсной радиографии состоит из импульсного генератора тока (амплитуда тока 70 кА, время нарастания тока 500 нс), питающего плазменную пушку, импульсного генератора тока XPG-3 (амплитуда тока 210 кА, время нарастания тока 180 нс), питающего РZ-пинч [9]. Внешний вид экспериментальной установки показан на Рис.1. Вакуумная камера, в которой находятся плазменная пушка и узел нагрузки генератора XPG-3, расположена отдельно от генератора XPG-3, а энергия от генераторов подводится по гибким низкоиндуктивным передающим линиям (Рис. 1). Такое решение позволяет расположить источник рентгеновского излучения в удобном месте относительно исследуемого объекта.

Рис. 1. Внешний вид экспериментальной установки.

На Рис. 2 показана конструкция плазменной пушки и узла нагрузки генератора XPG-3. Электроды пушки и катод генератора XPG-3 были выполнены из тантала. Изолятор изготовлен из керамики марки BK-94-1. На танталовый катод пушки подается питание от генератора плазмы (Рис.1.) и по торцевой поверхности керамического изолятора инициируется сильноточный дуговой разряд. Затем плазма, образованная при испарении катода пушки, поступает в межэлектродный зазор основного генератора через отверстие в

аноде диаметром 1.5–2.0 мм. После чего с некоторой задержкой τ_{delay} происходит включение генератора XPG-3 и в межэлектродном зазоре генератора XPG-3 формируется PZ-пинч.

Рис. 2. Конструкция плазменной пушки и узла нагрузки генератора XPG-3.

Поскольку мы задались целью создать радиограф, который был бы не только эффективен, но и удобен в практическом использовании, то мы не могли обойти вниманием регистрацию изображения. Ранее для регистрации рентгеновских изображений исследуемого объекта мы использовали фотопленки. Однако, в случае РД-пинча желательно получать снимок в режиме реального времени, что с фотопленкой сделать невозможно. Поэтому одной из задач была разработка метода цифровой регистрации рентгеновских изображений в вакууме. Для получения рентгеновских снимков использовался обыкновенный фотоаппарат матрицей, Canon EOS 5D Mark II полнокадровой который с был предварительно модернизирован. В заводском виде перед сенсором фотоаппарата установлены стеклянные ИК-фильтры, полностью поглощающие мягкое рентгеновское излучение. Однако сам сенсор имеет высокую чувствительность к рентгеновскому излучению. Соответственно, данные ИКфильтры были удалены. Для обеспечения целостности тонких фильтров излучения, закрывающих сенсор фотоаппарата от видимого и УФ-излучения, фотоаппарат был целиком расположен внутри специальной вакуумной камеры (Рис. 3). Чтобы обеспечить устойчивую было организовано внешнее питание работу ланной лиагностики фотоаппарата. дистанционное управление И запуск затвора. Синхронизация фотоаппарата И экспериментальной установки осуществлялась от единого блока запускающих импульсов.

Рис. 3. Внешний вид и расположение вакуумной камеры с цифровым фотоаппаратом и детектора рентгеновского излучения.

Для измерения размеров источника использовалась методика получения теневых изображений тест-объектов известных размеров, используемая нами ранее в экспериментах с X-пинчами [10]. Тест-объект представлял собой сетку из тонких вольфрамовых проволочек диаметром 7.5, 13 и 25 мкм. Перед фотоаппаратом был расположен фильтр излучения из титановой фольги толщиной 14.5 мкм, чтобы получить снимки в необходимом спектральном диапазоне рентгеновского излучения hv = 3-5 кэВ. Импульс рентгеновского излучения РZ-пинча регистрировался с помощью алмазного фотодетектора PCD, установленного за фильтром из титановой фольги толщиной 2 мкм. Токи дугового разряда и PZ-пинча регистрировались с помощью поясов Роговского.

3. Результаты эксперимента

На Рис. 4 показаны типичные осциллограммы тока дугового разряда, тока РZ-пинча и сигнала детектора PCD. В эксперименте мы варьировали задержку τ_{delay} включения генератора XPG-3 относительно начала тока дуги в диапазоне (0.4–1.0) мкс и тем самым изменяли начальную погонную массу PZ-пинча. При этом изменялось время t_{x-ray} до момента появления импульса рентгеновского излучения.

Рис. 4. Типичные осциллограммы импульсов тока дугового разряда, тока РZ-пинча и сигнала PCD, где $\tau_{delay} = 650$ нс, $t_{x-ray} = 130$ нс, $I_{x-ray} = 160$ кА.

На Рис. 5 показана зависимость времени генерации импульса рентгеновского излучения от задержки включения генератора XPG-3, а на Рис. 6 показана зависимость амплитуды сигнала PCD от момента генерации излучения (треугольные точки).

Из Рис. 5 и 6 видно, что с увеличением задержки τ_{delay} время до появления импульса рентгеновского излучения t_{x-ray} растет линейно, а наибольших выход излучения наблюдался, когда время до генерации импульса излучения t_{x-ray} составляло (140–170) нс, что соответствовало задержкам $\tau_{delay} = (0.6-0.7)$ мкс.

На Рис. 7 показан радиографический снимок тест-объекта, полученный в излучении РZ-пинча с помощью цифрового фотоаппарата. На снимке хорошо видны белые полосы по которые появляются краям изображения проволочки, В результате дифракции рентгеновского излучения. Размеры источника рентгеновского излучения танталового РZ-пинча были определены с помощью методики сравнения расчетных дифракционных немонохроматического протяженного источника с денситограммами картин для изображений (Рис. 7в), полученных в эксперименте [10]. Диаметр источника рентгеновского излучения в спектральном диапазоне hv = 3-5 кэВ варьировался в диапазоне (2-6) мкм, а высота источника — в диапазоне (3–12) мкм. Изображение тест-объекта, показанное на

Рис. 7, получено в излучении источника диаметром $d = 2.0 \pm 0.2$ мкм и высотой $h = 2.8 \pm 0.2$ мкм.

Рис. 5. Зависимость времени генерации импульса рентгеновского излучения от задержки включения генератора ХРG-3.

Рис. 6. Зависимость амплитуды сигнала PCD от момента генерации излучения.

Рис.7. Радиографический снимок тест-объекта (*a*), увеличенное изображение вольфрамовой проволочки диаметром 7.5 мкм (*б*) и денситограмма этого изображения (*в*).

Полученный массив радиографических снимков тест-объекта показал, что наилучшая воспроизводимость параметров источника от пуска к пуску достигалась если время до генерации импульса рентгеновского излучения составляло (140–170) нс.

4. Заключение

Разработана и апробирована в эксперименте танталовая плазменная пушка с керамическим изолятором для формирования РZ-пинча. Использование в качестве катодов плазменной пушки тугоплавких металлов и керамики в качестве изолятора позволяет существенно увеличить ресурс плазменной пушки. Эксперименты показали, что ресурс такой танталовой плазменной пушки составляет не менее 100 пусков.

Размеры источника рентгеновского излучения танталового РZ-пинча составляют (2–6) мкм в спектральном диапазоне hv = 3-5 кэВ. Наибольший выход излучения и наилучшая воспроизводимость параметров источника наблюдалась, когда время от начала тока в РZ-пинче до момента появления импульса излучения составляло (140–170) нс, а

задержка включения генератора XPG-3 относительно начала тока дуги составляла (0.6–0.7) мкс. Разработана и внедрена вакуумная система цифровой регистрации изображений в мягком рентгеновском спектральном диапазоне, что позволяет говорить о создании диагностического комплекса для импульсной радиографии.

Благодарности

Исследование выполнено за счет гранта Российского научного фонда № 22-19-00686, https:/rscf.ru/project/22-19-00686/

5. Список литературы

- [1] A.G. Rousskikh, A.V. Fedyunin, A.P. Artyomov, A.S. Zhigalin, and V.I. Oreshkin, X-ray radiography of aluminum cathodes eroded in high-current vacuum arcs, *Curr. App. Phys.*, vol. **19**, 704, 2019, doi: 10.1016/j.cap.2019.03.015
- [2] V.V. Kurkuchekov, M.G. Atlukhanov, A.V. Burdakov, V.V. Danilov, S.S. Popov, D.I. Skovorodin, et al., Soft X-ray radiography for measurements of a dense metal plasma created by intense relativistic electron beam on a tantalum target, *J. Instrum.*, vol. 17, P06019, 2022, doi: 10.1088/1748-0221/17/06/P06019
- [3] J. Wu, L.P. Wang, J.J. Han, M. Li, L. Sheng, Y. Li, et al., X-pinch radiography for the radiation suppressed tungsten and aluminum planar wire array, *Phys. Plasmas*, vol. **19**, 022702, 2012, doi: 10.1063/1.3677777
- [4] J.D. Douglass, and D.A. Hammer, COBRA-STAR, a five frame point-projection x-ray imaging system for 1 MA scale wire-array Z pinches, *Rev. Sci. Instrum.*, vol. 79, 033503, 2008, doi: 10.1063/1.2884707
- [5] A.A. Andreev, S.A. Bel'kov, K.Yu. Platonov, V.V. Romanov, and G. S. Rogozhnikov, Picosecond X-ray radiography of superdense high-temperature laser plasma, *Opt. Spectrosc.*, vol. **123**, 471, 2017, doi: 10.1134/S0030400X17090028
- [6] A.P. Artyomov, A.S. Zhigalin, I.V. Lavrinovich, V.I. Oreshkin, N.A. Ratakhin, A.G. Rousskikh, et al., A synchronized X-pinch driver, *Instr. Exp. Tech.*, vol. 57, 461, 2014, doi: 10.1134/S0020441214040010
- [7] A.G. Russkikh, A.V. Shishlov, A.S. Zhigalin, V.I. Oreshkin, S.A. Chaikovaskii, and R.B. Baksht, Small-sized vacuum-arc-discharge x-ray radiograph, *Plasma Sources Sci. Technol.*, vol. 20, 035011, 2011, doi: 10.1088/0963-0252/20/3/035011
- [8] S.A. Pikuz, T.A. Shelkovenko, and D.A. Hammer, X-Pinch. Part I, *Plasma Phys. Rep.*, vol. 41, 291, 2015, doi: 10.1134/S1063780X15040054
- [9] А.П. Артёмов, А.В. Федюнин, Н.В. Жарова, А.Д. Ленский, А.Г. Русских, Д.В. Рыбка, В.И. Орешкин, Компактный импульсный генератор для питания плазменных пушек, 8th International Congress on Energy Fluxes and Radiation Effects, Tomsk, Russia, 442, 2022, doi: 10.56761/EFRE2022.S4-P-040802
- [10] A.P. Artyomov, S.A. Chaikovsky, V.I. Oreshkin, A.V. Fedunin, A.G. Rousskikh, and N.A. Ratakhin, On the Size of the Soft X-Ray Radiation Source Based on an X-Pinch, *Russ Phys J.*, vol. 62, 2194, 2020, doi: 10.1007/s11182-020-01966-z