doi: 10.56761/EFRE2024.S1-P-005201

Распределение плотности энергии радиально сходящегося низкоэнергетического сильноточного электронного пучка

П.П. Кизириди, Г.Е. Озур^{*}, И.В. Пегель

Институт сильноточной электроники СО РАН, Томск, Россия *ozur@lve.hcei.tsc.ru

Аннотация. С помощью 3-канального секционированного калориметра исследовано распределение плотности энергии радиально сходящегося низкоэнергетического сильноточного электронного пучка вдоль цилиндрического анода. Установлено, что на данное распределение существенное влияние оказывают собственное магнитное поле пучка и магнитное поле тока, растекающегося по аноду. Результаты экспериментов удовлетворительно согласуются с аналитическими расчётами и численным моделированием, выполненными авторами ранее.

Ключевые слова: радиально сходящийся электронный пучок, дуговые источники плазмы, секционированный калориметр

1. Введение

Низкоэнергетические (10–30 кэВ) сильноточные (до 25 кА) электронные пучки (НСЭП) микросекундной длительности широко используются для модификации поверхностных слоёв металлических материалов методом импульсного плавления [1, 2]. Большинство созданных к настоящему времени сильноточных электронных пушек имеют планарноаксиальную геометрию и формируют цилиндрические пучки, транспортируемые вдоль силовых линий внешнего ведущего магнитного поля сквозь плазменный анод, обеспечивающий как транспортировку пучка, так и возбуждение взрывной эмиссии на катоде [3]. Однако для облучения протяженных изделий наиболее рационально использовать радиально сходящиеся пучки.

Источник таких пучков представлен нами ранее [4, 5]. Его создание стало возможным благодаря разработке катодного узла со встроенными во взрывоэмиссионный катод резистивно развязанными дуговыми источниками плазмы, инициируемыми пробоем по поверхности диэлектрика [6]. Использование данного катодного узла для возбуждения сильноточной электронной эмиссии позволяет обойтись без плазменного анода, т.е. работать в режиме вакуумного или газонаполненного диода. При амплитуде ускоряющего напряжения 15–20 кВ средний за импульс ток пучка на анод в [4, 5] составляет 8–12 кА, что значительно превышает как ток Альфвена для цилиндрического пучка, так и критический ток замагничивания электронного потока для диодов большого радиуса. Следовательно, собственное магнитное поле радиально сходящегося пучка, а также магнитное поле тока, растекающегося по цилиндрическому аноду, будут существенно влиять на распределение плотности тока и энергии пучка вдоль анода, стягивая электроны пучка к его центральной части (пинч-эффект). Настоящая работа представляет собой краткий обзор полученных нами теоретических и экспериментальных результатов в этом направлении.

2. Теоретическое исследование и численное моделирование

В [7] нами было получено аналитическое выражение для критического тока замагничивания электронного потока в коаксиальном диоде конечной протяжённости:

$$I_{cr} = \frac{I_0}{2\ln(R_{\rm KII}/R_{\rm A})} \sqrt{\Gamma^2 - 1} \,. \tag{1}$$

Это выражение, в котором $I_0 = mc^3/e \approx 17$ кА, отличается лишь присутствием в знаменателе логарифмического сомножителя от выражения для классического тока Альфвена и представляет собой аналог этой величины для коаксиального диода при $R_{\rm K\Pi} \ll L$. Здесь $R_{\rm K\Pi}$ – радиус эмиссионной границы катодной плазмы, L – её длина, $R_{\rm A}$ – радиус анода, $\Gamma = 1+eU/mc^2$ – релятивистский фактор, соответствующий ускоряющему напряжению U, m – масса покоя электрона, c – скорость света в пустоте. Легко видеть, что при U = 10-20 кВ, критический ток составит единицы килоампер.

На рис. 1 представлены результаты численного моделирования [7]. Видно, что при токе пучка чуть ниже критического (рис. 1ж) распределение его вдоль оси *z* является однородным (рис. 1д), а при незначительном превышении тока пучка над критическим значением (рис. 1з) происходит стягивание пучка к центральной плоскости симметрии (рис. 1е).

Рис. 1. Расчетные конфигурации электронного потока (*a*, *б*), траектории частиц (*s*, *г*); продольные распределения тока электронов на аноде и приведенной кинетической энергии этих частиц (*d*, *e*); зависимости от времени ускоряющего напряжения и тока электронного пучка (*ж*, *з*). Внутренний радиус катодной плазмы *R*_{КП} = 1.0 см, радиус анода *R*_A = 0.5 см. Левая колонка: радиус анодной плазмы *R*_{АП} = 0.88 см, ускоряющий зазор 0.12 см (ток ниже критического на 20%). Правая колонка: *R*_{АП} = 0.9 см, ускоряющий зазор 0.1 см (ток выше критического на 10%) [7].

Очевидно, что в реальной ситуации, когда ток в течение импульса нарастает (по абсолютной величине), последовательно реализуются оба режима (рис. 2). Экспериментальные данные интегрального за импульс распределения плотности энергии пучка вдоль анода представлены в следующем разделе.

Рис. 2. Типичные осциллограммы импульсов ускоряющего напряжения (Ch1, 20 кВ/дел), полного тока катода (Ch2, 24 кА/дел) и суммарного тока на анод (Ch4, 15 кА/дел). Горизонтальная шкала – 1 мкс/дел [7].

3. Методика эксперимента

Эксперименты проводились на установке, описанной в [5], с использованием двухсекционного катодного узла; расстояние между центрами секций составляло 4 см, внутренний радиус кольцевых катодов – также 4 см. Измерения распределения плотности энергии вдоль анода, W(z), проводились с помощью трёхканального секционированного калориметра (рис. 3).

Рис. 3. Схематическое устройство секционированного калориметра. *1* – полый анод; *2* – коллимирующие отверстия диаметром 6.8 мм; *3* – медный цилиндр Фарадея (поглотитель пучка); *4* – калиброванный терморезистор; *5* и *6* – токопроводы. Координата *z* = 0 соответствует положению посередине между катодными секциями; расстояние между центрами катодных секций – 4 см.

Каждый датчик секционированного калориметра представлял собой медный поглотитель, к тыльной стороне которого припаян калиброванный терморезистор B57820-M 561-A5 (номиналом 1 кОм при температуре 25 °C). Датчики располагались внутри полого анода наружным радиусом $R_A = 0.8$ см; каждый датчик пайкой электрически соединялся с анодом двумя нержавеющими проволоками диаметром 0.3 мм и длиной 8 мм. Масса каждого датчика составляла 4.9±0.1 г. Тепловое излучение стенок полого анода вследствие их нагрева пучком вносило заметные искажения в результаты измерений, точность которых, по нашим оценкам, составляла около ±30%.

Регистрация импульсов ускоряющего напряжения осуществлялась с помощью активного делителя, полного тока в разрядном контуре и тока пучка на анод – поясами Роговского,

работающими в режиме трансформатора тока. Сигналы с датчиков подавались на входы 4канального широкополосного (200 MHz) цифрового осциллографа Tektronix TDS 2024.

Откачка рабочей камеры до давления 0.006 Па осуществлялась турбомолекулярным насосом, а напуск рабочего газа (аргон) – с помощью прибора CHA-2.

4. Экспериментальные результаты и обсуждение

Калориметрические измерения показали, что плотность энергии в центральной части пучка в среднем на 25–30% выше, чем на его периферии (рис. 4). Данная неоднородность распределения, вызванная действием собственного магнитного поля пучка, может быть в дальнейшем компенсирована увеличением расстояния между катодными секциями. Это позволит уменьшить концентрацию катодной плазмы, а значит и плотность энергии в центральной части пучка.

Рис. 4. Распределения плотности энергии пучка вдоль анода для различных значений зарядного напряжения генератора высоковольтных импульсов. Слева – вакуумный диод (давление остаточных газов – 0.006 Па), справа – газонаполненный диод (аргон при давлении 0.08 Па).

Распределения W(z), в целом, соответствуют характеру эрозии анода вследствие испарения при большом количестве импульсов (рис. 5). Видно, что в центральной части автографа пучка эрозия анода выше, чем в его периферийной части. Однако количественные соотношения между распределением уноса материала анода и распределением W(z) выявить очень сложно, поскольку скорость испарения (ниже точки кипения) экспоненциально зависит от температуры, которая к тому же меняется во времени.

Рис. 5. Фотография анода из нержавеющей стали после 20 тысяч импульсов пучка. Зарядное напряжение генератора высоковольтных импульсов, питающего электронную пушку – 17 кВ.

П.П. Кизириди и др.

В вопросе о самофокусировке пучка ключевым параметром является отношение ларморовского радиуса вращения электрона (r_L) в собственном магнитном поле пучка к длине его пути внутри ускоряющего зазора и в анодной плазме (АП). Оценки показывают, что при токе пучка на анод 20 кА, индукция магнитного поля у поверхности анода радиусом 0.5 см составит 0.4 Тл с каждого края пучка (если ток с анода стекает симметрично). Тогда, r_L электрона с энергией 15 кэВ составит чуть больше 1 мм. На радиусе 1 см (0.5 см от анода) r_L увеличится, очевидно, вдвое.

Оценим теперь толщину слоя АП. В начальной стадии импульса (1.5-2 мкс), когда ток пучка не превышает сотен ампер, возникает первичная АП при десорбции газа с поверхности анода под действием электрического поля и дальнейшего разряда в этом газе. Дополнительный вклад в рост концентрации АП на этой стадии вносит ионизация десорбированного газа электронами пучка, отражёнными от анода электронами пучка и вторичными электронами. Отметим, что десорбция под действием исключительно электрического поля в наших условиях (десятки кВ/см) реальна. Например, по данным Тарасовой [8] существенная полевая десорбция наблюдалась при импульсных и постоянных напряжениях 20-200 кВ и напряжённостях поля 10-1000 кВ/см. Таким образом, в нашем случае достаточно интенсивная десорбция начинается практически с началом импульса. По мере нарастания тока электронов на анод (ток на второй стадии нарастает до десятков килоампер примерно за 2 мкс) рост концентрации АП существенно ускоряется за счет электронно-стимулированной десорбции и ионизации газа электронами пучка. Толщину слоя АП оценим, исходя из данных о скорости расширения АП, образованной из десорбированного газа. Например, по данным Пушкарёва и Полисадова [9], скорость расширения АП составляет ~0.17 см/мкс. При такой скорости, за 2-3 мкс толщина слоя АП может составить ~ 3-5 мм. Даже если скорость АП в 2-3 раза меньше, то всё равно толщина слоя АП сопоставима с r_L , т.е. фокусировка пучка начнётся при его токе ~ 2–3 кА, что соответствует формуле (1).

5. Заключение

Экспериментально установлено, что плотность энергии в центральной части протяжённого радиально сходящегося сильноточного электронного пучка, генерируемого двухсекционным катодным узлом, примерно на 25–30% выше, чем на периферии. Полученные экспериментальные данные качественно согласуются с результатами аналитических расчётов и численного моделирования, выполненными нами ранее.

Следует отметить, что для решения многих задач поверхностной модификации металлических материалов наблюдавшаяся в экспериментах неоднородность распределения плотности энергии пучка вполне приемлема. Дальнейшее улучшение его однородности может быть обеспечено путём уменьшения концентрации катодной плазмы в центральной части диода за счёт увеличения расстояния между секциями катодного узла с 4 до 5–6 см. Это позволит компенсировать негативное фокусирующее действие собственного магнитного поля тока пучка и тока, растекающегося по аноду.

Благодарность

Работа выполнена при поддержке Российского научного фонда (проект № 22-29-00070).

6. Список литературы

[1] В.П. Ротштейн, Д.И. Проскуровский, Г.Е. Озур, Ю.Ф. Иванов, Модификация поверхностных слоев металлических материалов низкоэнергетическими сильноточными электронными пучками. Новосибирск: Наука, 2019.

- [2] L.L. Meisner, V.P. Rotshtein, V.O. Semin, S.N. Meisner, A.B. Markov, E.V. Yakovlev, F.A. D'yachenko, A.A. Neiman, E.Yu. Gudimova, Microstructural Characterization and Properties of a Ti-Ta-Si-Ni Metallic Glass Surface Alloy Fabricated on a TiNi SMA Substrate by Additive Thin-Film Electron-Beam Method, *Surface & Coatings Technology*, vol. 404, 12644, 2020, doi: 10.1016/j.surfcoat.2020.126455
- [3] Г.Е. Озур, Д.И. Проскуровский, Генерация низкоэнергетических сильноточных электронных пучков в пушках с плазменным анодом, *Физика плазмы*, **44**(1), 21, 2018, doi: 10.7868/S0367292118010146
- [4] П.П. Кизириди, Г.Е. Озур, Источник радиально сходящихся низкоэнергетических сильноточных электронных пучков, *ПТЭ*, 6, 61, 2022, doi:10.31857/S0032816222060143
- [5] П.П. Кизириди, Г.Е. Озур, Увеличение энергии в импульсе радиально сходящегося низкоэнергетического сильноточного электронного пучка, *ПТЭ*, 4, 84, 2023, doi: 10.31857/S0032816223030072
- [6] П.П. Кизириди, Г.Е. Озур, Катодный узел сильноточной электронной пушки с многоканальным инициированием эмиссии пробоем по поверхности диэлектрика, *Письма в ЖТФ*, **46**(15), 47, 2020, doi: 10.21883/PJTF.2020.15.49750.18364
- [7] П.П. Кизириди, Г.Е. Озур, И.В. Пегель, Влияние собственного магнитного поля на конфигурацию радиально сходящегося сильноточного электронного пучка, Известия вузов. Физика, **66**(7), 25, 2023, doi: 10.17223/00213411/66/7/3
- [8] Л.В. Тарасова, Десорбционный механизм электрического пробоя в высоком вакууме, Доклады АН СССР, 167(2), 330, 1966.
- [9] А.И. Пушкарёв, С.С. Полисадов, Влияние анодной и катодной плазмы на работу электронного диода со взрывоэмиссионным катодом, *ЖТФ*, **92**(2), 232, 2022, doi: 10.21883/JTF.2022.02.52012.234-21