doi: 10.56761/EFRE2024.C4-P-029504

Сравнительный анализ свойств YAG:Се покрытий, синтезированных разными методами реактивного магнетронного осаждения

А.А. Рунц, Г.А. Блейхер*

Национальный исследовательский Томский политехнический университет, Томск, Россия *bga@tpu.ru

Аннотация. Покрытия состава иттрий-алюминиевого граната, легированного церием (YAG:Ce), получены с использованием трёх методов реактивного магнетронного осаждения. Были задействованы высокочастотное распыление мишени из Y3Al5O12, а также среднечастотное (СЧ) распыление набора отдельных мишеней из Y и Al в металлическом и оксидном режимах. Последующий высокотемпературный отжиг на воздухе позволил сформировать кристаллическую структуру YAG. Проанализированы скорость И энергоэффективность осаждения, а также структурно-фазовый состав И катодолюминесцентные свойства синтезированных покрытий. Оказалось, что метод на основе СЧ распыления набора отдельных мишеней в металлическом режиме является наиболее производительным и энергоэффективным. Катодолюминесцентная спектроскопия показала, что покрытия, осаждённые методами на основе СЧ распыления, обладают свойствами люминофора, причём интенсивность катодолюминесценции оказалась выше для случая их осаждения в металлическом режиме распыления.

Ключевые слова: реактивное магнетронное осаждение, YAG:Се покрытия, люминесценция.

1. Введение

Методы формирования функциональных покрытий на поверхности материалов и изделий, основанные на работе магнетронных распылительных систем (МРС) в присутствии реактивных газов в вакуумной камере принято называть реактивным магнетронным осаждением (РМО) [1, 2]. Большое количество управляющих рабочих параметров МРС в сочетании с возможностью формирования атомарных потоков по механизму распыления на поверхности твердотельных мишеней из самых разных материалов позволяют создавать покрытия сложного элементно-фазового состава различного функционального назначения. В этой связи применение методов РМО для нанесения люминофорных покрытий из кристаллического материала иттрий-алюминиевого граната (YAG, химический состав Y₃Al₅O₁₂), легированного атомарными частицами из группы лантаноидов, представляется вполне перспективным. Подобные материалы находят широкое применение В оптоэлектронной промышленности, приборостроении, медицине и других отраслях.

В настоящее время в научной литературе представлены различные подходы для реализации РМО. Часто используется распыление керамической мишени, спечённой из порошков веществ, которые должны входить в состав синтезируемого покрытия [3]. Как правило, стремятся к тому, чтобы стехиометрический состав мишени был близок к составу осаждаемого покрытия. Здесь присутствие реактивного газа в вакуумной камере способствует достижению требуемой концентрации его в составе синтезированного вещества. Так как керамические мишени накапливают заряд, то для стабильной работы МРС часто используют высокочастотные источники питания (13.56 МГц). Метод с их применением получил название – высокочастотное магнетронное распыление.

Методы, основанные на распылении чистых металлических мишеней при подаче в вакуумную камеру рабочего (как правило, аргона) и реактивного газов, тоже позволяют получать покрытия сложного химического состава. При этом, в зависимости от концентрации реактивного газа, реализуются три режима распыления: металлический, когда скорость распыления гораздо больше скорости образования химического соединения на поверхности мишеней, распыление в режиме химического соединения в противном случае, и

переходный (промежуточный) режим [1, 2]. Так как коэффициенты распыления химических соединений металлов гораздо ниже, чем чистых металлов, то и скорость осаждения покрытий будет гораздо выше в случае реализации металлического режима распыления. Но в последнем случае могут возникнуть проблемы с достижением нужной стехиометрии. Следует заметить, что подобные методы не получили широкого применения для нанесения люминофорных покрытий.

Функциональные свойства люминофорных покрытий на основе YAG:Се зависят от их элементного и фазового состава. Также большое значение имеет производительность технологии. Обычно она включает два этапа: осаждение вещества покрытия (прекурсора) с помощью MPC и высокотемпературный отжиг для формирования кристаллической структуры. Длительность второго этапа обусловлена свойствами синтезируемого покрытия. Следовательно, именно первый этап определяет производительность технологии в целом.

В настоящей статье представлены результаты исследования структурно-фазового состава и катодолюминесцентных свойств YAG:Се покрытий, полученных упомянутыми выше методами. Задача состояла в том, чтобы выявить наиболее производительный и энергоэффективный метод получения плёночного прекурсора состава (Y-Al-O):Се. При этом синтезированные покрытия должны обладать структурно-фазовым составом, соответствующим YAG:Се, и люминофорными свойствами.

2. Описание экспериментов и методов

2.1. Осаждение и отжиг

Процедура формирования люминофорных покрытий YAG:Се состояла из двух этапов. На первом этапе производилось осаждение покрытий состава (Y-Al-O):Се на поверхности подложек из кремния и сапфира с помощью набора магнетронных распылительных систем разного вида. Второй этап – это высокотемпературный отжиг образцов с покрытиями с целью формирования у них кристаллической структуры иттрий-алюминиевого граната, благодаря которой частицы активатора (ионы Ce³⁺) смогут генерировать фото- или катодолюминесценцию.

Осаждение (Y-Al-O):Се покрытий производилось тремя различными методами, основанными на магнетронном распылении твердотельных мишеней при подаче в вакуумную камеру рабочего (аргон) и реактивного (кислород) газов. Это: 1) высокочастотное магнетронное распыление керамической мишени состава Y₃Al₅O₁₂ (BЧ), 2) и 3) – среднечастотное (СЧ) распыление отдельных металлических мишеней из Y (99.99%) и Al (99.99%) в металлическом и оксидном режимах соответственно (диаметр мишеней – 0.09 м). Добавление атомов примеси-активатора в формирующееся покрытие везде проводилось посредством распыления дисковой Се мишени (99.99%) диаметром 0.09 м. Рабочие параметры методов осаждения содержатся в Таблице 1.

Магнетроны с Y, Al и Ce мишенями были оснащены униполярными среднечастотными источниками питания APEL-M-5PDC (Applied Electronics, Russia) с частотой импульсов 100 кГц и коэффициентом заполнения 0.8. Все блоки питания СЧ распыления работали в режиме стабилизации мощности. ВЧ магнетронное распыление керамической мишени производилось с помощью ВЧ источника питания Comdel CX-1250S (13.56 МГц) с мощностью 400 Вт, которое является типичным для высокочастотных источников питания магнетронных распылительных систем.

Эксперименты с СЧ распылением выполнялись с использованием высокочастотного генератора индуктивно-связанной плазмы (RPG-128, Laboratory of Vacuum Technology Plus LLC, Россия) мощностью 1250 Вт. Он нужен для частичной диссоциации и ионизации

Метод	Мишень	Мощность, Вт	Ток, А	Напряжение, В	Напуск О2, ст. см ³	Рабочее давление, Па
ВЧ	$Y_3Al_5O_{12}$	400			12	0.6
	Ce	50	0.13	355	42	0.0
СЧ, металлический режим	Al	1570	3.25	490		0.37
	Y	1000	2.12	460	27	
	Ce	150	0.64	233		
СЧ, оксидный режим	Al	1570	4.35	362		
	Y	1000	2.5	397	42	0.55
	Ce	100	0.25	390		

кислорода, напускаемого в вакуумную камеру, чтобы усилить его хемосорбцию в осаждаемом покрытии.

T r VAC C

Нанесение покрытий выполнялось на подложки, совершающие планетарное вращение на карусели радиусом 0.15 м. Минимальное расстояние между подложкой и мишенями, изготовленными из Y, Al и Ce, составляло 0.108, 0.104 и 0.221 м соответственно. Ось вращения карусели была зафиксирована в плоскости, проходящей через центр мишеней.

Отжиг производился в воздушной среде при атмосферном давлении и температуре 1100°С в течение 6 часов со скоростью нагрева ~ 7 °С/мин. Для этого была использована высокотемпературная печь Series AB-900 (Applied Test System, США).

2.2. Анализ покрытий

Толщина покрытий определялась с помощью высокоскоростного спектрального эллипсометра "Ellipse-1891" (Научно-производственный центр нанотехнологий, Россия) и трехмерного бесконтактного профилометра Micro Measure 3D Station (STIL, Франция). Морфология поверхностей и элементный состав покрытий анализировались на сканирующем электронном микроскопе Vega 3 (Tescan, Чехия), оснащенном насадкой для энергодисперсионной спектроскопии (ЕДС). Измерения методом рентгеновской дифракции проводились с использованием прибора Shimadzu XRD-7000S (Япония) с ускоряющей трубкой CuKa (40 кВ и 30 мА) в диапазоне от 10 до 90° (шаг сканирования – 0.0143°). Расшифровка рентгеновских спектров и определение параметров кристаллической структуры выполнялись с использованием базы данных ICDD-4⁺.

Для исследования свойств катодолюминесценции (КЛ) полученных покрытий была задействована установка, представляющая из себя вакуумную камеру с источником электронов внутри нее. Образец с покрытием располагался напротив источника электронов. К исследуемому образцу было подведено оптоволокно, подключенное к спектрометру AvaSpec-2048.

3. Результаты и обсуждение

3.1. Скорость осаждения и структурные свойства покрытий

В Таблице 2 представлены данные о скорости осаждения (Y-Al-O):Се покрытий. Также здесь приведены значения показателя $K_{ef} = W_{sum}/V_{dep}$, где W_{sum} – мощность магнетронов, V_{dep} – скорость нанесения покрытий. Он представляет собой величину энергии магнетронов, необходимую для нанесения 1 нм покрытия. Здесь видно, что скорость осаждения покрытий методом СЧ распыления в металлическом режиме является наибольшей. Соответственно, он оказался наиболее энергоэффективным.

гаолица 2. Эффективность магнетронного осаждения (Y-AI-O):Се покрытии.							
Метод	Напуск О2, ст. см ³	Скорость осаждения (V _{dep}), нм/с	Энергоэффективность (<i>Kef</i>), Дж/нм				
ВЧ	42	0.025	$1.8 \cdot 10^4$				
СЧ, металлический режим	27	0.83	$3.3 \cdot 10^3$				
СЧ, оксидный режим	42	0.041	$6.5 \cdot 10^4$				

Длительность осаждения всех покрытий для анализа их структурных и люминофорных свойств была подобрана такой, чтобы их толщина составила ~1 мкм. Сведения об элементном составе покрытий до и после отжига, определённом с помощью ЭДС, содержится в Таблице 3. Здесь видно, что он не вполне соответствует стехиометрии соединения Y₃Al₅O₁₂. В покрытиях, полученных ВЧ распылением мишени состава Y₃Al₅O₁₂, имеет место избыток алюминия, в то время как в случае СЧ распыления металлических мишеней наблюдается его недостаток. Во всех случаях содержание кислорода является избыточным. Обращает внимание присутствие значительного количества нежелательных примесных атомов в структуре покрытий, полученных методом ВЧ распыления. Содержание Се во всех покрытиях не превышает 1-2%, что является достаточным для активации люминесценции [4].

Таблица 3. Элементный состав покрытий.								
Метод	Концентрация, ат.%							
осажде-	Отжиг	0	V	A1	Ce	прочее	Y:Al	(Y+Al):O
ния		U	1	AI	Ce			
ВЧ	до	64.90 ± 0.19	8.77±0.16	17.62 ± 0.43	1.28 ± 0.07	7.42 ± 0.4	1:2.01	1:2.42
	после	61.88±0.65	11.61 ± 0.98	18.46 ± 0.65	1.42 ± 0.23	6.61±0.2	1:1.59	1:2.05
СЧ, металли-	до	61.99±0.37	15.97±0.15	21.86±0.25	0.18±0.05	-	1:1.37	1:1.63
ческий режим	после	63.58±0.54	15.99±0.17	20.26±0.32	0.16±0.05	-	1:1.26	1:1.8
СЧ,	до	58.72 ± 0.54	20.40±0.15	19.28±0.53	1.6 ± 0.08	-	1:0.96	1:1.48
оксидный режим	после	58.24±0.61	20.85±0.18	19.42±0.55	1.46±0.2	-	1:0.93	1:1.44

Примечание. Для Y₃Al₅O₁₂, Y:Al= 1:1.67, (Y+Al):O = 1:1.15

СЭМ поверхности покрытий показала, что до отжига все они имели сплошную плотную структуру, характерную для магнетронного осаждения. Однако после отжига (Рис. 1) морфология поверхности изменилась. Так, покрытия, полученные с помощью ВЧ распыления, остались сплошными, хотя и приобрели более грубую структуру. Вероятно, присутствие побочных металлических примесей в них поспособствовало сохранению сплошности после высокотемпературного отжига. У покрытий, осаждённых СЧ распылением, появились микродефекты в виде вспучиваний, трещин и отколов.

Рис. 1. Морфология поверхности покрытий после высокотемпературного отжига, полученных ВЧ распылением (а), СЧ распылением в металлическом (б) и оксидном (в) режимах.

На Рис. 2 представлены рентгенограммы покрытий, полученных СЧ распылением в металлическом режиме, до и после отжига, а также информация о характеристиках фазового состава данной структуры после отжига.

Рис. 2. Рентгенограммы покрытий, полученных методом среднечастотного распыления мишеней Al, Y, Ce в металлическом режиме до (A) и после (B) высокотемпературного отжига на воздухе.

Так, до отжига покрытие оказалось рентгеноаморфным, так как энергии, поступающей на подложку в процессе магнетронного осаждения, не достаточно для формирования кристаллической структуры YAG. Последующий отжиг привёл к формированию фазы Y₃Al₅O₁₂. Положение дифракционных пиков соответствует положениям стандартной фазы Y₃Al₅O₁₂, полученной Объединённым комитетом по стандартам порошковой дифракции JCPDS-330040. Наблюдается предпочтительная (402) ориентация фазы YAG. Содержание кристаллической фазы YAG составляет 100%.

3.2. Катодолюминесцентные свойства

Спектры КЛ покрытий, полученных при СЧ распылении, представлены на Рис. 3. Энергия возбуждающих электронов составила 2.5, 5.0 и 7.5 кэВ. Во всех спектрах тестируемых YAG:Се покрытий детектируется широкая полоса в диапазоне от 490 до 850 нм, который соответствует радиационным переходам возбуждённых электронов между энергетическими уровнями 5*d* и 4*f* в ионах активатора Ce³⁺ [3, 4]. Следует заметить, что КЛ в этой области спектра оказалась более интенсивной для покрытий, полученных в металлическом режиме СЧ магнетронного распыления. Покрытия, полученные с использованием ВЧ распыления, не проявили люминофорных свойств. Вероятно, причиной этого стало избыточное присутствие нежелательной примеси.

Рис. 3. Спектры излучения покрытий, полученных методами среднечастотного распыления в металлическом (а) и оксидном (в) режимах.

4. Заключение

Скорость нанесения покрытий состава (Y-Al-O):Се с помощью СЧ магнетронного распыления иттриевой и алюминиевой мишеней в металлическом режиме оказалась примерно в 20 раз выше, чем в оксидном. Производительность и энергоэффективность СЧ металлического режима гораздо выше не только по сравнению с СЧ распылением в оксидном режиме, но и с ВЧ распылением керамической Y₃Al₅O₁₂ мишени. Структура покрытий непосредственно после осаждения была рентгеноаморфной. Последующий отжиг на воздухе при температуре 1100 °C в течение 6 часов оказался достаточным для формирования кристаллической структуры YAG:Се.

Покрытия, синтезированные с использованием СЧ магнетронного распыления, обладают люминофорными свойствами, причём интенсивность катодолюминесценции оказалась выше для случая их осаждения в металлическом режиме распыления.

Благодарности

Исследование проводилось с использованием оборудования центра коллективного пользования «Наноматериалы и нанотехнологии» ТПУ при поддержке Министерства образования и науки РФ, проекты № 075-15-2021-710 и FEWM 2024-0004.

5. Список литературы

- [1] D. Depla, Magnetrons, *Reactive Gases and Sputtering*. Ghent: Ghent University, 2015.
- [2] J. Musil, P. Baroch, J. Vl'cek, K.H. Nam, and J.G. Han, Reactive magnetron sputtering of thin films: present status and trends, *Thin Solid Films*, vol. 475, 208, 2005, doi: 10.1016/j.tsf.2004.07.041
- [3] W.-H. Chao, R.-J. Wu, T.-B. Wu, Structural and luminescent properties of YAG:Ce thin film phosphor, *Journal of Alloys and Compounds*, vol. **506**, 98, 2010, doi:10.1016/j.jallcom.2010.04.136
- [4] D. Valiev, T. Han, V. Vaganov, and S. Stepanov, The effect of Ce³⁺ concentration and heat treatment on the luminescence efficiency of YAG phosphor, *J. Phys. Chem. Solid.*, vol. **116**, 1, 2018, doi: 10.1016/j.jpcs.2018.01.007